Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT For marine species with planktonic dispersal, invasion of open ocean coastlines is impaired by the physical adversity of ocean currents moving larvae downstream and offshore. The extent species are affected by physical adversity depends on interactions of the currents with larval life history traits such as planktonic duration, depth and seasonality. Ecologists have struggled to understand how these traits expose species to adverse ocean currents and affect their ability to persist when introduced to novel habitat. We use a high‐resolution global ocean model to isolate the role of ocean currents on the persistence of a larval‐producing species introduced to every open coastline of the world. We find physical adversity to invasion varies globally by several orders of magnitude. Larval duration is the most influential life history trait because increased duration prolongs species' exposure to ocean currents. Furthermore, variation of physical adversity with life history elucidates how trade‐offs between dispersal traits vary globally.more » « less
-
Exchange of material across the nearshore region, extending from the shoreline to a few kilometers offshore, determines the concentrations of pathogens and nutrients near the coast and the transport of larvae, whose cross-shore positions influence dispersal and recruitment. Here, we describe a framework for estimating the relative importance of cross-shore exchange mechanisms, including winds, Stokes drift, rip currents, internal waves, and diurnal heating and cooling. For each mechanism, we define an exchange velocity as a function of environmental conditions. The exchange velocity applies for organisms that keep a particular depth due to swimming or buoyancy. A related exchange diffusivity quantifies horizontal spreading of particles without enough vertical swimming speed or buoyancy to counteract turbulent velocities. This framework provides a way to determinewhich processes are important for cross-shore exchange for a particular study site, time period, and particle behavior.more » « less
-
Abstract A perturbative solution of simplified primitive equations for nonlinear weakly stratified upwelling over a frictional slope is found that resolves the vertical structure of velocity fields and can satisfy Ertel’s potential vorticity conservation in the stratified inviscid interior. The solution uses assumptions consistent with the model proposed by Lentz and Chapman, including a steady-state, constant cross-shore density gradient, no alongshore gradients, laterally inviscid, and consideration of cross-shore advection of alongshore momentum. The solution resolves the vertical structure of velocity fields (including subsurface maxima of compensational flow, not resolved by Lentz and Chapman) and can satisfy Ertel’s potential vorticity conservation in the stratified inviscid interior. The dynamics are similar to Lentz and Chapman; bottom stress balances alongshore wind stress in a homogeneous density ocean and is replaced by nonlinear cross-shore transport of alongshore momentum as the Burger number (S=αN/f, whereα,N, andfare the bottom slope, buoyancy frequency, Coriolis frequency, respectively) increases. When the solution uses the empirical relation between cross-shore and vertical density gradients proposed by Lentz and Chapman, vorticity conservation is not satisfied and the nonlinear momentum transport estimated by the solution linearly increases withS, asymptotically matching Lentz and Chapman forS< 1. When the solution conserves interior potential vorticity, the momentum transport is proportional toS2forS< 1 and is in better agreement with numerical simulations.more » « less
An official website of the United States government
